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Abstract

A numerical study is performed for the time-dependent laminar natural convection air cooling in a vertical rectangular enclos
three discrete flush-mounted heaters. The lowest-elevation heater changes the thermal condition between the ‘on’ and ‘off’ modes
(Case 2), the lowest-elevation heater is abruptly switched on (off) from the ‘off’ (‘on’) state. In Case 3, the ‘on’ and ‘off’ modes are r
periodically. Numerical simulations were conducted for a range of non-dimensional period and for the Rayleigh number based on
width between 105 and 107 with given heater size and locations. The results show the influence of the time-dependent thermal conditi
lowest-elevation heater on the temperatures of the other heaters. At low Rayleigh number, the cycle-averaged temperatures of all
little affected by the periodic change. At high Rayleigh number, the temperatures of the heaters reach peak values when the non-d
period of the change in thermal condition takes intermediate values. The evolutions of global flow and temperature fields are ex
to provide physical interpretations. The study emphasizes that the transient-stage temperatures at the heaters can exceed the c
steady-state values. This is relevant to practical design of electronic devices.
 2003 Elsevier SAS. All rights reserved.
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1. Introduction

Effective cooling of electronic devices in an enclos
space warrants an in-depth scrutiny. One buoyant-conve
flow layout is illustrated in Fig. 1. The electronic comp
nents are modeled as discrete heat sources on one ve
sidewall, and the opposite vertical sidewall is maintaine
a lower temperature [1–4]. Based on numerical and/or ex
imental endeavors, several correlations have been pres
in the literature for the Nusselt number and the temperat
of the heaters. Among others, it was learned that a discre
heated vertical wall leads to a higher heat transfer coeffic
than a cavity with a fully-heated vertical wall [2].

In the analysis of buoyant convection due to multiple h
sources, the important flow ingredient is the interaction
the thermal wake of a bottom heater and the heaters loc
above. The optimum design of electronic packages wh
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Fig. 1. Flow layout and the coordinates.
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Nomenclature

g gravitational acceleration
H height of the cavity
k thermal conductivity
l length of a heater
qh heat flux of a heater
p,P dimensional and non-dimensional pressure
Pr Prandtl number,Pr = ν/α

Ra Rayleigh number,Ra = gβqhW
4/kνα

s dimensional spacing between discrete heaters
t dimensional time
T dimensional temperature
U,V non-dimensional velocity components in theX

andY directions
W width of enclosure
x, y dimensional horizontal and vertical coordinates
z,Z dimensional and non-dimensional period,

Z = zα/W2

Greek symbols

α thermal diffusivity
β isobaric coefficient of volumetric thermal

expansion
ρ density
τ non-dimensional time
ν kinematic viscosity
θ non-dimensional temperature
θm non-dimensional surface-averaged temperature

of a heater
θon, θoff the steady-state temperature of Case 1, Case 2
θ cycle-averaged temperature of a heater, Eq. (7)
Θ temperature amplification factor for a given

heater, Eq. (8)
Ψ non-dimensional stream function
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would improve the overall cooling of a multi-compone
system was explored [5,6]. It was also revealed that
two-dimensional model predicts reasonably well the gen
trends of realistic systems [7].

It is noted that the majority of preceding investigatio
dealt with the steady-state characteristics. However, kn
edge on the time-dependent responses of the thermal
tems during the switching-on and switching-off and ot
time-variant changes in thermal environment is essentia
the setup and operation of modern high-tech electronic
vices. Studies on such transient characteristics in an en
sure with multiple heat sources are scarce [8–10]. Of
ticular interest to practical applications is the requirem
that the maximum temperature of the system componen
below a certain threshold value. The present study aim
delineate the transient flow characteristics in a rectang
enclosure with multiple electronic components. The tim
dependent flows are induced by the energizing (on) or the
energizing (off) modes of the heaters. As documented in
prior accounts, the influence of the lower-elevation heate
the higher-elevation heaters is more pronounced due to
interactions of the thermal wake of a lower-elevation hea
In the present paper, for definiteness, the thermal cond
at the lowest-elevation heater alternates between the ‘on
‘off’ modes while the rest of the heaters maintain the ‘o
mode. Detailed numerical computations are conducted,
physical interpretations of the results will be provided.

The purpose is to demonstrate that the transient tem
atures at the heaters may become higher than their ste
state values. Also, the increases in the maximal temp
tures at the heaters are shown to be affected appreciab
the change in the period of time-varying thermal conditi
These issues will be of concern to the design and opera
of the thermal system involving electronic devices.
-

-

-
-

y

2. Model

The schematic of the two-dimensional physical sys
and the coordinates are sketched in Fig. 1. The rectang
cavity (widthW , heightH ) is filled with an incompressible
Boussinesq fluid, which satisfiesρ = ρr[1 − β(T − Tr)], β
being the coefficient of thermometric expansion, and s
script r denoting the reference state. All other physical pr
erties are taken to be constant. The temperature at the
left vertical sidewall is constantTC, and the top and bottom
horizontal walls are insulated. As a paradigmatic geo
try [1], three discrete heaters of lengthl each are flushed
mounted at the right vertical wall with equal spacings. The
heat flux generated by each heater isqh.

The governing time-dependent Navier–Stokes equati
in non-dimensional form, are [10]:
Continuity

∂U

∂X
+ ∂V

∂Y
= 0 (1)

Momentum

∂U

∂τ
+ ∂

∂X

(
U2) + ∂

∂Y
(VU) = −∂P

∂X
+ Pr · ∇2U (2)

∂V

∂τ
+ ∂

∂X
(UV ) + ∂

∂Y

(
V 2)

= −∂P

∂Y
+ (Pr · Ra)θ + Pr · ∇2V (3)

Energy

∂θ

∂τ
+ ∂

∂X
(Uθ) + ∂

∂Y
(V θ) = ∇2θ (4)

where

∇2 = ∂2

2 + ∂2

2 (5)

∂X ∂Y
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In the above, non-dimensionalization has been im
mented by using

τ = tα/W2, (X,Y ) = (x, y)/W, (U,V ) = (u, v)W/α

θ = (T − Tc)/(qhW/k), P = (p + ρgy)W2/ρα2

Ra = gβqhW
4/kνα, Pr = ν/α

In the present formulation, the cavity widthW was cho-
sen as the characteristic length. This is in accord with
non-dimensionalization scheme of Ref. [1], which cons
ered a similar geometrical arrangement.

The boundary conditions at the enclosure walls are:

atY = 0.0,H/W U = V = ∂θ

∂Y
= 0 (6a)

atX = 0.0 U = V = 0, θ = 0 (6b)

atX = 1.0 U = V = 0 (6c)

atX = 1.0
∂θ

∂X
= 1 (at heater 2, heater 3)

∂θ

∂X
= 0 (elsewhere) (6d

Three types of time-dependent heat-flux conditions
the lowest-elevation heater 1 are considered (see Fig. 2
Case 1, heater 1 is suddenly switched on atτ = 0 from the
‘off’ state. Case 2 depicts the opposite situation of switch
off heater 1 atτ = 0 from the ‘on’ state. In Case 3, th

Fig. 2. Types of time-dependent thermal boundary conditions at heat
(a) Case 1; (b) Case 2; (c) Case 3.
‘on’ and ‘off’ modes of heater 1 are repeated periodica
in a square-wave form with non-dimensional periodZ [≡
zα/W2]. The thermal boundary condition at heater 1 can
expressed as follows:

Case 1:
∂θ

∂X
= 0(τ < 0),

∂θ

∂X
= 1(τ � 0)

Case 2:
∂θ

∂X
= 1(τ < 0),

∂θ

∂X
= 0(τ � 0)

Case 3:
∂θ

∂X
= 1(nZ � τ <

Z

2
+ nZ)

∂θ

∂X
= 0

(
Z

2
+ nZ � τ < Z + nZ

)

n = 1,2, . . .

The above system of equations was solved numericall
employing a finite-volume procedure based on the S
PLER algorithm [11]. The central differencing was adop
for the diffusion terms, and a modified version of the QUIC
scheme was utilized for the nonlinear convective terms [
Convergence at a given time step was declared when
maximum relative change between two consecutive it
tion levels fell below 10−4 for U,V, θ . A parallel check was
made to ensure that the energy balance between the he
and the cold wall was met within 0.2%.

Numerical results were checked for grid- and time-s
convergence. Based on these tests, a uniform grid of
in the y direction and a non-uniform grid of 61 in thex
direction were selected for the present calculations.
time step of (τ = 10−5 was chosen. Under-relaxatio
was not required to obtain convergence. These exer
established the accuracy and robustness of the pre
numerical methodologies. No claims are made here as t
innovativeness of the numerical techniques. The calculat
were performed in a routine manner. The emphasis is pla
on extracting physically meaningful interpretations out
the numerical results.

3. Results and discussion

In the present work, the geometrical particulars of
heater arrangements adopted those of [1], i.e.,H/W =
5.0, l/H = 1.0/30.0, s/H = 9.0/50.0,Pr = 0.7, and the
range ofRa = 105−107.

The principal features of the steady-state flows
exemplified in Fig. 3. At highRa, isotherms are clustere
in the immediate vicinity of the heaters. These lead
thin boundary-layer flows near the vertical walls. Wh
the lowest-elevation heater 1 is inactive (see Fig. 3(a)),
buoyancy-driven flow is largely confined to the upper par
the cavity above the level of heater 2. In the lower part of
cavity below the level of heater 2, the fluid is substantia
isothermal and stagnant. When all three heaters are pow
on (see Fig. 3(b)), the global flow throughout the cav
is invigorated. It is noted that, due to the presence of
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Fig. 3. Stream functions (ψ) and i sotherms (θ) at the steady state
Ra = 107. (a) heater 1 in ‘off’ mode [ψmax = 26.54, θmax = 0.0588];
(b) heater 1 in ‘on’ mode [ψmax= 30.70, θmax = 0.0624].
thermal wake of heater 1, buoyant flow in the localiz
region in the vicinity of heater 2 is intensified.

Now, the time-dependent features are described. Fi
illustrates the temperature histories of the heaters in Ca
(switch-on of heater 1) and Case 2 (switch-off of heater 1
the plots,θm denotes the averaged value of temperature o
the surface of a heater. Note the difference in scales use
the ordinates of the plots. As heater 1 is powered on abru
(see Figs. 4(a), 4(c), 4(e)), the temperature of heater 1
sharply, and it reaches a peak value. However, since buo
motions are induced near heater 1, the temperature of h
1 falls afterward due to the incoming cold fluid from belo
and then it marches slowly toward the steady-state va
For heater 2 and heater 3, the important dynamic elem
is the influence of the thermal wake produced by heate
The peak values of temperatures of heater 2 and heater
Fig. 4. Temperature histories at the heaters. (a), (b):Ra = 105; (c), (d):Ra = 106; (e), (f): Ra = 107. (a), (c), (e): Case 1; (b), (d), (f): Case 2. ( : heater
1; : heater 2; · : heater 3).
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achieved soon after the switch-on. However, after reac
the peak value, the buoyant motion in the thermal w
near heater 2 strengthens, which brings in the relatively
fluid near heater 1 from below. The response of heat
is qualitatively similar to that of heater 2. The temperat
peak of heater 3 is smaller than that of heater 2, since
intensity of the thermal wake of heater 1 is reduced a
travels upward further. The above-stated observations
more distinct asRa increases.

On the other hand, when heater 1 is switched off (
Figs. 4(b), 4(d), 4(f)), the temperature of heater 1 dec
fast to approach the cold wall temperature. The tempera
of heater 2 and heater 3 decrease slowly toward the ste
state values. It is noticed in Figs. 4(d) and 4(f) that the de
curves of the temperatures of heater 2 and heater 3 s
small overshoots at early times. This can also be expla
by noting the disappearance of the thermal wake of hea
with the switch-off. Near heater 2 and heater 3, buoy
flows weaken quickly, which leads to high temperatures
heater 2 and heater 3. It is recalled that one purpos
the thermal control is to maintain the temperatures of
system components to be below an allowable value. In
respect, the significance of the transient behavior, as we
the steady-state features, is stressed.

The early-time evolutions of flow (ψ) and temperature
(θ) fields for Ra = 107, after the switch-on of heater 1, a
exemplified in Fig. 5. At short times, the thermal bound
layer is formed near heater 1 (see Fig. 5(a)). The ther
wake of heater 1 impacts on the region of heater 2, w
the intensity of the buoyant flow in this region has n
been much affected. Therefore, the temperature of hea
records a peak (see Fig. 4(e)) aroundτ = τb in Fig. 5.
After this stage, the buoyant motion near heater 2 intensi
which brings forth the entrainment of the relatively cold flu
from the bottom region of the cavity. This causes a decre
in the temperature of heater 2, as indicated in Fig. 4(e)
a later time, the thermal wake of heater 1 reaches the re
of heater 3, and a qualitatively similar interpretation can
-

applied. However, the impact of the thermal wake of heat
on the region of heater 3 is less effective since the ther
wake has been weakened by thermal loss to the interior

The sequential plots for case 2 are exhibited in Fig
With the de-activation of heater 1, the driving buoyan
near heater 1 ceases. At small times, the temperatur
heater 2 and heater 3 rise due to the weakening buoy
in these localized zones. At later times, the temperatur
the interior decreases, and this brings down the tempera
of the heaters accordingly (Figs. 6(c), 6(d)). At large tim
the cavity below the elevation of heater 2 is largely stagn
and isothermal.

Next, the numerical results for Case 3 are scrutinized.
time-periodic behavior of temperature and vertical veloc
at heater 2 is illustrated in Fig. 7. In the plots, the absc
shows the passage of time, normalized by the impo
period,τ/Z. The vertical velocity at heater 2 is measured
(X,Y ) = (0.95,2.5). For comparison purposes, the stea
state values of Case 1 and Case 2 are also shown in
figures. When the periodZ of the square wave of Case 3
large, the direct effect of the externally-applied tempera
variation at heater 1 is mild. In this case, therefore,
system response is qualitatively similar to that of Cas
over the first-half of the period and to that of Case 2 o
the last-half of the period. Since the periodZ is large,
these two responses are less overlapping and, therefore
interacting with each other, as illustrated in the V-plots
Fig. 7(d).

As the period(Z) decreases, the characteristics of Cas
and Case 2 are mixed and interacting in the results of Ca
It is recalled that, in Case 1 (abrupt switch-on of heater
the buoyancy near heater 2 intensifies after the thermal w
of heater 1 reaches the elevation of heater 2. On the o
hand, in Case 2 (abrupt switch-off of heater 1), the buoya
near heater 2 weakens rapidly. In other words, the build
of buoyancy near heater 2 progresses comparatively sl
in Case 1, whereas the attenuation of buoyancy near hea
takes place relatively rapidly. Consequently, if the switch
Fig. 5. Sequential plots of flow and temperature fields. Case 1.Ra = 107. (a) τ = τa = 1.5 × 10−2; (b) τb = 3.0 × 10−2; (c) τc = 3.9 × 10−2;
(d) τd = 4.3× 10−2. (ψ = 2.5,(θ = 0.004.
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Fig. 6. Same as in Fig. 5, but for Case 2. (a)τ = τa = 5.0× 10−3; (b) τb = 2.0× 10−2; (c) τc = 5.0× 10−2; (d) τd = 1.0× 10−1.

Fig. 7. Histories of temperature (left column) and of vertical velocity (right column) at heater 2. Case 3.Ra = 107. (a)Z = 0.006; (b)Z = 0.024; (c)Z = 0.04;
(d) Z = 0.2. ( : steady-state value of Case 1; · : steady-state value of Case 2).
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Fig. 8. Sequential plots of stream functions(ψ) and isotherms(θ). Ra = 107. Z = 0.006. (a)τ = τa = Z/4; (b) τb = 2Z/4; (c) τc = 3Z/4; (d) τb = 4Z/4.
(ψ = 2.5, (θ = 0.003.
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and switch-off of heater 1 alternate with the same durat
heater 2 is exposed longer to the condition of relativ
weaker buoyancy on the average. These trends become
conspicuous asZ decreases.

As the periodZ decreases further, the frequent interm
tent thermal forcing is akin to a continuous sinusoidal en
gizing of heater 1. The response of heater 2 is similar to
nusoidal variation. Therefore, the interactions occurring
to the effects of the previous cycle and of the present c
emerge to be a dominant dynamic element. The seque
depictions of flow and thermal fields are given in Fig. 8
Z = 0.006. The thermal wake of heater 1 moves to the
gion of heater 2 by way of the boundary layer on the hea
vertical wall. The bulk of the cavity interior responds to t
time-periodic continuous heating from heater 1.

When the periodZ takes an intermediate value (see Fig
for Z = 0.024), the sequential plots are revealing. As he
1 is activated atτ = τa (see Fig. 9(a)), a new circulation ce
is formed near heater 1, and the thermal wake of heat
grows along the heated vertical wall. It is noted that, d
to the effect of the previous cycle, the buoyant flow is l
intense in the region below the elevation of heater 2. T
implies that the heated fluid from heater 1 takes more t
to reach the elevation of heater 2. On the other hand,
effect of the de-activation of heater 1 (see Figs. 9(c)
9(d)) propagates promptly to the region of heater 2 along
heated vertical wall. As is evident in Fig. 9(d), aroundτ =
τd, the de-activation of heater 1 is felt in the area of heate
which weakens the buoyancy in this region. Accordingly
time elapses fromτ = τd to τ = τa, the increase in buoyanc
near heater 2 is not pronounced, as the thermal wak
heater 1 passes by the region of heater 2. On the ave
therefore, due to the weakened buoyancy, the temperatu
heater 2 for an intermediate value ofZ is higher than for
largerZ.

For heater 1, 2, 3, the mean temperature of a heater
a cycle,θ , is defined as
e

l

,
f

r

θ = 1

Z

τss+Z∫
τss

θm dτ. (7)

It is also useful to gauge the relative increase in tem
ature at a heater due to the square-wave variation (Ca
of heating at heater 1. For this purpose, it is advantage
to define the temperature-amplification factorΘ for a given
heater as

Θ = θ − θoff

θon − θoff
(8)

In the above,θon[θoff] denotes the steady-state tempe
ture of a given heater when heater 1 is in on-mode (Cas
(off-mode (Case 2)). Therefore,Θ in Eq. (8) indicates the
increase in the temperature over the off-mode value, r
tive to the difference between the values correspondin
the off-mode (Case 2) and on-mode (Case 1).

Fig. 10 illustrates the variations of the temperature a
plification factor for a given heater,Θ, versus the periodZ.
WhenZ is large, the temperatures of heaters are the ste
state values of Case 1 for nearly a half period and the va
of Case 2 for the other half period. Hence, for all the heat
Θ is close to 0.5, which indicates that the cycle-avera
temperatures of the heaters,θ , are the arithmetic mean va
ues ofθon andθoff .

WhenZ is small,Θ of heater 1 and heater 3 are clo
to 0.5 for all Ra, while Θ of heater 2 is lower than 0.
at Ra = 107. As disclosed in Fig. 8, the frequent therm
forcing from heater 1 forms the momentum boundary la
along the heated vertical wall above heater 1. The ave
buoyancy force near heater 2 is relatively strong ove
period. Hence,Θ of heater 2 is lower than 0.5 at highRa.

For an intermediate value ofZ, heater 2 and heater
show different features on the variation ofΘ. At Ra = 105,
convection is less influential, and, therefore,Θ of heater
2 and heater 3 are close to the arithmetic mean value
θon and θoff regardless ofZ. As Ra increases, convectio
prevails, and the dependence ofΘ of heater 2 and heater 3 o
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Fig. 9. Same as in Fig. 8, but forZ = 0.024.
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Fig. 10. Variations of the temperature amplification factor for a given he
Θ , with Z. (a) heater 1; (b) heater 2; (c) heater 3.
Z is pronounced. AtRa = 107,Θ of heater 2 is maximum a
aroundZ = 0.024. It is noted thatΘ of heater 2 for this value
of Z is higher than 1.0, which reflects that the cycle-avera
temperature,θ , is higher than the steady-state temperatur
Case 1.

As remarked previously, whenZ is intermediate, the
thermal effect of de-activation of heater 1 reaches heat
before the thermal wake of heater 1 promotes the buoya
force near heater 2. Thus, the buoyancy force near hea
is relatively low. Accordingly, the value ofZ, for which
heater 2 has the maximum value ofΘ, can be deduced from
the time needed for the thermal effect of heater 1 to e
influence on heater 2. Fig. 10(b) shows that, asRa decreases
Θ of heater 2 is maximized whenZ is slightly larger,
which supports the above argument. However, the ove
magnitude of the peak is suppressed by the attenuated e
of buoyant convection.

The time-mean flow and temperature fields are descr
by averaging the time-dependent solutions over a cy
which are illustrated in Fig. 11. For a large period(Z = 0.2),
the time-mean solution appears to be similar to the avera
value of the steady-state solutions of Case 1 and Cas
For a small period(Z = 0.006), the momentum boundar
layer is distinct in the time-mean solution along the hea
vertical wall above heater 1, which strengthens the buo
convection near heater 2. It is in line with the previo
argument that, at highRa, the cycle averaged temperature,θ ,
of heater 2 has a relatively low value whenZ is very small.
However, forZ = 0.024, the time-mean solution reveals th
the intensity of buoyancy force is weak along the hea
vertical wall below heater 2, especially in the localiz
region near heater 2. The temperatures in the interior re
between heater 1 and heater 2 are higher than those o
case ofZ = 0.2. These facts are in accord with the previo
interpretation for the cycle-averaged temperature of heat

WhenZ is intermediate, the buoyancy force near heat
remains fairly constants over a period (see Fig. 9). As sh
in the averaged temperature fields, the thermal wake f
heater 1 losses a larger portion of thermal energy into
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Fig. 11. Time-mean flow and temperature fields.Ra = 107. (a) Z =
0.006 [ψmax = 27.14, θmax = 0.0609]; (b) Z = 0.024 [ψmax = 28.02,
θmax = 0.0606]; (c) Z = 0.2 [ψmax = 27.47, θmax = 0.0611]. (ψ =
2.5,(θ = 0.003.

interior region between heater 1 and heater 2. Hence,Θ of
heater 3 reaches a minimum at the intermediate period.
noted that the temperature of heater 3 is the highest am
the three heaters. In order to maintain the temperatur
the entire system below a threshold value, it is desirabl
choose the proper value of the periodZ, at which the value
of Θ of heater 3 is minimized.

4. Conclusion

In Case 1 and Case 2, the influence of the thermal w
generated by heater 1 and the accompanying buoyant
near the heaters lead to maximum temperatures of hea
and heater 3. These trends are conspicuous at highRa.

In Case 3, the interactions between the effects of Ca
and Case 2 play a central role on the buoyant flows n
heater 2 and heater 3 and on the corresponding temper
changes of heaters. For an intermediate value of the pe
the buoyancy force near heater 2 is relatively weak ov
period. For a very small value of the period, the momen
boundary layer is formed along the vertical heated w
above the elevation of heater 1 due to a near-continu
thermal forcing at heater 1. The buoyancy force near hea
is increased accordingly.
e
,

The Θ–Z plots illustrate that, atRa = 107, when the
periodZ is intermediate,Θ of heater 2 reaches a maximu
while Θ of heater 3 shows a mild minimum. AsRa
decreases, the peak values ofΘ are less pronounced and th
occur at a larger value ofZ.
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